Numerical Prediction Model for Temperature Distributions in Concrete at Early Ages
نویسندگان
چکیده
A finite element-finite difference numerical model is developed for predicting non-uniform temperature development in hydrating concrete with respect to time and space. The results obtained from this model can be used by structural and construction engineers to predict critical thermal stresses induced due to differential temperatures between the core and the surface of the concrete at early ages and between the zero-stress temperatures and the minimum equilibrating ambient temperatures that the concrete experiences during its service life. The prediction of zero-stress temperatures also enables to quantify the extent of builtin curl developed in concrete structures. The finite element is used to space discretization while the finite difference is used to obtain transient solutions of the model. The numerical formulations are then programmed in Matlab. The numerical results were compared with experimental results found in literature and demonstrated very good agreement.
منابع مشابه
Estimation of Evolution of Relative Humidity Distribution for Concrete Slabs
Realistic prediction of concrete shrinkage and creep requires the calculation of the distributions of relative humidity at various times. Although the distributions of the relative humidity can be computed by numerical methods from the differential equation for diffusion, simple prediction formulas can facilitate structural analysis. The purpose of this paper is to present a simple formula for ...
متن کاملEstimation of Evolution of Relative Humidity Distribution for Concrete Slabs
Realistic prediction of concrete shrinkage and creep requires the calculation of the distributions of relative humidity at various times. Although the distributions of the relative humidity can be computed by numerical methods from the differential equation for diffusion, simple prediction formulas can facilitate structural analysis. The purpose of this paper is to present a simple formula for ...
متن کاملA simple and efficient plasticity-fracture constitutive model for confined concrete
A plasticity-fracture constitutive model is presented for prediction of the behavior of confined plain concrete. A three-parameter yield surface is used to define the elastic limit. Volumetric plastic strain is defined as hardening parameter, which together with a nonlinear plastic potential forms a non-associated flow rule. The use of non-associated flow rule improves the prediction of the dil...
متن کاملInfluence of High Temperatures on Flexural Strength of Foamed Concrete Containing Fly Ash and Polypropylene Fiber
In this study, the elevated temperature flexural strengths of lightweight foamed concrete (LFC) containing fly ash (FA) and polypropylene fiber (PF) was investigated experimentally and statistically. The variables included were the temperature degrees (in a range of 20 to 600°C), LFC densities of 600, 800, 1000, 1200 and 1400 kg/m3 and additive content. Two mixes were made by replacing 15% and ...
متن کاملA New Method for Estimation of Creep of Concrete Using Short-TermTests under Higher Temperature
In the Present study, attempt will be made to propose a new method for prediction of long-term essential creep of concrete utilizing some short-term creep tests under high temperature. To do so, regarding the similarities between essential creep of concrete and creep in viscoelastic materials, the time–temperature equivalence relation in viscoelastic materials is evaluated for concrete. This re...
متن کامل